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Beyond water: Elemental composition of life
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Martian and lunar carbon sources

p Martian atmosphere
n 95.3% carbon dioxide @ 6mbar
n 25% condenses seasonally
n 1.9% nitrogen gas

p Lunar ice 
n LCROSS mission found 
11.4% carbon species
in volatiles fraction 
n 3.5% NH3
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The case for life-supported space exploration

p Advantages of biological/biomimetic processes for carbon upcycling 
n Operate at mild temperature, pressure and chemical environment
n Highly selective           High conversion rates  and efficiency
n Always produce biodegradable/recyclable products/waste streams
n Don`t use exotic materials
n Compact

p Example: Carbon dioxide to methane conversion
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Sabatier Process (1897)
- 400 °C
- Elevated pressure
- Nickel catalyst

Bioelectro-
methanogenesis
- 20 °C
- 1 atmosphere
- Carbon electrodes
(Zhen et al. 2018)



Beyond fuels: From methane to bioplastics

p Biocondensation by methanotroph type II to Polyhydroxybutyrate (PHB)
n Biologic growth optimization by Mango Materials
n PHB similar to polypropylene (PP)

p Production temperature: 37°C versus 80°C (PP)
p Production pressure: 1 atm versus 40 atm (PP)
p Biodegradable
p Nitrogen starvation triggers PHB production
p Has good 3D print quality mixed with 
Polylactic acid (= another biopolymer)

n Currently gas delivery through gas sparging
p Non-uniform gas distribution which is even
worse in low-gravity environment
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How do biological reactors breathe?

6



What are breathable membranes?
p Hydrophobic microporous materials

n Up to 85% porosity
n Pore size: 0.1 - 0.5 micron
n Thickness down to 50 micron
n Typical materials: PP, PVDF, PTFE, PE
n Cannot handle pressure or surfactants
n High vapor fluxes

p Dense polymeric membranes
n Non-porous
n Non-wettable
n Typical materials: PDMS (silicone)
n Low vapor fluxes, but can be pressurized and no problem with surfactants! 7



Goal and objectives

p Goal NASA STTR Phase II
Design an automated membrane-aerated bioreactor (MABR) that can produce PHB

p Objectives 
n Membrane gas transfer characterization and selection procedure

p Pure water and oxygen 
p During growth trial and mixed gases 

n Safety system for methane leakage 
n Selection of sensors and flow and pressure control valves

p Gas utilization efficiency
p Growth rate/PHB production monitoring and optimization

n Implement control system 
n Implementation of gas recycle/intermittent gas delivery
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Materials and Methods



Membrane characteristics 
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Manufacturer Model 
number Material Membrane 

type Porosity (%) Pore size (μm) Thickness 
(μm)

Aquastill 0.3 micron Polyethylene Flat sheet 85 0.3 76

CLARCOR QP952 PTFE Flat sheet 70-85 0.2 225

LiquiCel-3M X50 Fiber Polypropylene Hollow fiber 40 0.04 40

Microdyn-
Nadir

MD 020 CP 2N Polypropylene Hollow fiber - 0.2 500

Minntech-
Cantel

MV-C-030-L Polypropylene Hollow fiber 40 0.03 28

Oxymem PDMS 
(Silicone)

Hollow fiber dense dense 50

Permselect PDMSXA-1000 PDMS 
(Silicone)

Hollow fiber dense dense 55



Module characteristics 
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Manufacturer Membrane 
area (m2)

Packing 
density 
(m2/m3)

Specific 
weight 
(kg/m2)

Flatsheet CSM 
(CLARCOR/ Aquastill)

0.0154 6 181

LiquiCel-3M 1.4 1085 0.36

Microdyn-
Nadir

0.1 244 2.08

Minntech-
Cantel

0.23 2434 0.17

Permselect 0.1 973 0.86
Hollow Fiber CSM 
(Oxymem – 17”)

0.855 447 0.85

Hollow Fiber CSM 
(Oxymem – 27”)

0.855 273 1.27

CSM flatsheet module for 
Aquastill/CLARCOR membrane

CSM hollow fiber module for Oxymem

LiquiCel-3M

Microdyn-Nadir

Minntech-Cantel Permselect



Gas transfer rate comparison membranes

p Oxygen transfer as an indicator for methane transport 
n Porous membranes are non-selective
n Vernier oxygen sensors much less expensive than methane sensors 
n Validation required for dense membranes

p Flux determination
n First oxygen removal by nitrogen sparging in reactor filled with DI
n Flux calculation based on initial oxygen concentration increase over time

Flux = &'()
&*.,-.-/012..30.14560

78 9)
7).7:;
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Growth trial operation

p Bacterial inoculum
n 250 mL of inoculum per 4.5L growth trial
n 5 mL from previous methanotroph type II 
microcosm with media from Mango Materials
n Growth vial 50:50 headspace O2/CH4 

p Operating conditions controlled by Labview
n Temperature: 37 °C
n pH: 7
n Gas flows: 0.5 SLPM CH4 and 0.1 SLPM O2

p Monitoring: T, P, pH, DO, gas flows and concentrations (CH4, O2, CO2&H2O) 
p Sampling: Ammonium (Hach TNT), Optical Density, Bleach ratio & FTIR (PHB)
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MABR 3.0
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Results and Discussion



Membrane flux
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Equivalent system mass on Mars of gas transfer system

Based on packing density (m2/m3) and specific weight (kg/m2) membrane modules and 3.77 kgLEO/kgMars (Anderson et al. 2018)
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Pressure drop in membrane module
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Based on 70% pump efficiency and 87 kgLEO/kWMars (Anderson et al. 2018)

Equivalent system mass on Mars of energy system
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Based on 3.77 kgLEO/kgMars and 87 kgLEO/kWMars (Anderson et al. 2018)

Equivalent system mass on Mars of total membrane system
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p Flatsheet CSM module with CLARCOR membrane
n 2x0.0154 m2 in parallel, 2 LPM liquid flow rate, 30°C
n PHB production after 100h, 22 wt% PHB per dry cell mass (FTIR)

Growth trial results
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p Hollow fiber Minntech module
n 0.23 m2, 2 LPM liquid flow rate, 30°C
n PHB production after 40h, 47 wt% PHB per dry cell mass (GC)
n However, irreversible membrane wetting after 400h of operation!

Growth trial results
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p Preliminary results CSM hollow fiber module with Oxymem membrane
n 0.855 m2, 2 LPM liquid flow rate, 37°C, 3 psi back pressure, nitrate-free recipe
n Dense membranes don`t wet, can be pressurized and less water vapor loss
n PHB production after 60h, 0.45 g H2O h-1 m-2 water loss

Growth trial results
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p Gas transfer and pressure drop of 7 different membranes was characterized
p Every membrane exhibited a liquid flow rate minimizing ESM to Mars
p Minntech, Permselect, Liqui-Cel and Oxymem (17”) had the lowest ESM 
p PHB was successfully produced with three different membranes
p A maximum PHB content of 47 wt% per dry mass was obtained with the 

Minntech membrane
p However, the methanotrophs seem to produce a surfactant-like molecule 

that irreversibly wetted the Minntech membranes after >400h
p Further tests will be conducted with non-wettable dense Permselect and 

Oxymem membranes

Conclusions
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The future? Breathing Reactor Networks!

p Microbial hybrid system with liquid-liquid membrane contactors
n Half the contactor surface
n No external gas input
n No vapor condensation issues
n Most gas remains dissolved

p Safe
p Energy efficient

25Confidential
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Thank you!
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