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Beyond water: Elemental composition of life
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Martian and lunar carbon sources

O Martian atmosphere
m 95.3% carbon dioxide @ 6mbar
m 25% condenses seasonally Lunar Ice Volatile Composition
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The

case for life-supported space exploration

O Advantages of biological/biomimetic processes for carbon upcycling

Operate at mild temperature, pressure and chemical environment
Highly selective High conversion rates and efficiency

Always produce biodegradable/recyclable products/waste streams
Don't use exotic materials

Compact

O Example: Carbon dioxide to methane conversion

Sabatier Process (1897)
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Beyond fuels: From methane to bioplastics

O Biocondensation by methanotroph type Il to Polyhydroxybutyrate (PHB)

‘ L,

m Biologic growth optimization by Mango Materials

N 4 ‘1 Methane

H Modern landfill 1,
(biogas)

or digester

m PHB similar to polypropylene (PP)

o Production temperature: 37°C versus 80°C (PP)
o Production pressure: 1 atm versus 40 atm (PP)
O Biodegradable

Microbial
process

o Nitrogen starvation triggers PHB production
o Has good 3D print quality mixed with
Polylactic acid (= another biopolymer)

m Currently gas delivery through gas sparging
o Non-uniform gas distribution which is even
worse in low-gravity environment




iological reactors breathe?

How do b



What are breathable membranes?

O Hydrophobic microporous materials
Up to 85% porosity
Pore size: 0.1 - 0.5 micron
Thickness down to 50 micron
Typical materials: PP, PVDF, PTFE, PE
Cannot handle pressure or surfactants

High vapor fluxes

CLUGRs
(€ I~

O Dense polymeric membranes

Non-porous
Non-wettable

Typical materials: PDMS (silicone)
Low vapor fluxes, but can be pressurized and no problem with surfactants!




Goal and objectives

O Goal NASA STTR Phase |l

Design an automated membrane-aerated bioreactor (MABR) that can produce PHB
O Objectives

Membrane gas transfer characterization and selection procedure
o Pure water and oxygen

o During growth trial and mixed gases

Safety system for methane leakage

Selection of sensors and flow and pressure control valves
o Gas utilization efficiency
o Growth rate/PHB production monitoring and optimization

Implement control system

Implementation of gas recycle/intermittent gas delivery




Materials and Methods




Membrane characteristics

Model Membrane o Thickness

Aquastill
CLARCOR
LiquiCel-3M

Microdyn-
Nadir

Minntech-
Cantel

Oxymem

Permselect

0.3 micron Polyethylene
QP952 PTFE

X50 Fiber Polypropylene

MD 020 CP 2N Polypropylene

MV-C-030-L  Polypropylene

PDMS
(Silicone)

PDMSXA-1000 PDMS
(Silicone)

Flat sheet
Flat sheet
Hollow fiber

Hollow fiber

Hollow fiber

Hollow fiber

Hollow fiber

70-85
40

40

dense

dense

0.2
0.04
0.2

0.03

dense

dense

225
40
500

28

50

55
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Module characteristics

Aquastill/CLARCOR membrane

€ ‘r'y

Packing Specific
density weight
(m2/m?3) (kg/m?)

Membrane
area (m?)

Flatsheet CSM 0.0154 6 181
(CLARCOR/ Aquastill)
LiquiCel-3M 1.4 1085 0.36
Microdyn- 0.1 244 2.08
Nadir
Minntech- 0.23 2434 0.17
Cantel
Permselect 0.1 973 0.86
Hollow Fiber CSM 0855 447 085
(Oxymem —17")
Hollow Fiber CSM 0.855 273 1.27
(Oxymem —27") rrm——— Y permselect =

Permselect

11



Gas transfer rate comparison membranes

O Oxygen transfer as an indicator for methane transport
Porous membranes are non-selective
Vernier oxygen sensors much less expensive than methane sensors

Validation required for dense membranes

O Flux determination
First oxygen removal by nitrogen sparging in reactor filled with DI
Flux calculation based on initial oxygen concentration increase over time

dCo, mg O, ]
dt. Amembrane-Vreactor LM?.min

Flux =
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Growth trial operation

O Bacterial inoculum
m 250 mL of inoculum per 4.5L growth trial
= 5 mL from previous methanotroph type I
microcosm with media from Mango Materials
= Growth vial 50:50 headspace O,/CH,

O Operating conditions controlled by Labview
= Temperature: 37 °C
m pH:7
» Gas flows: 0.5 SLPM CH, and 0.1 SLPM O,

O Monitoring: T, P, pH, DO, gas flows and concentrations (CH,, O,, CO,&H,0)

O Sampling: Ammonium (Hach TNT), Optical Density, Bleach ratio & FTIR (PHB)
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MABR 3.0
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Results and Discussion



Membrane flux
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Equivalent system mass on Mars of gas transfer system
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Based on packing density (m2/m3) and specific weight (kg/m?2) membrane modules and 3.77 kg o/Kkgnars (Anderson et al. 2018)
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Pressure drop in membrane module

250
y = 104.41x - 20.684
R2 = 0.9931 -
y = 25.384x - 9.294 :
i R? = 0.9953 ® Minntech
200 ¢ -
o ® LiquiCell
© o o
o : .y =15.07x + 2.5967
~ 150 i R = 0.9613" ® PermSelect
?, ‘ e .. Microdyn
£ 100 e
o e Flatsheet CSM
{ &g (CLARCOR/Aquastill)
50 oA "y =8.2248x +6.0486| © Hollow fiber CSM
y=27.77x - 16478 R*=0.9198 (Oxymem)
, i . y = 2.0108e05124x
E ﬁ' V8 e ° R? = 0.9803
0 2 4 6 8 10

Liquid flow, LPM




Equivalent system mass on Mars of energy system
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Based on 70% pump efficiency and 87 kg ro/kWyars (Anderson et al. 2018)
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Equivalent system mass on Mars of total membrane system
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Growth trial results

O Flatsheet CSM module with CLARCOR membrane
2x0.0154 m? in parallel, 2 LPM liquid flow rate, 30°C

PHB production after 100h, 22 wt% PHB per dry cell mass (FTIR)
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Growth

trial results

O Hollow fiber Minntech module

0.23 m?, 2 LPM liquid flow rate, 30°C

PHB production after 40h, 47 wt% PHB per dry cell mass (GC)
However, irreversible membrane wetting after 400h of operation!
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Growth trial results

O Preliminary results CSM hollow fiber module with Oxymem membrane
0.855 m?, 2 LPM liquid flow rate, 37°C, 3 psi back pressure, nitrate-free recipe
Dense membranes don't wet, can be pressurized and less water vapor loss
PHB production after 60h, 0.45 g H,O h'! m~? water loss
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Conclusions

O Gas transfer and pressure drop of 7 different membranes was characterized
O Every membrane exhibited a liquid flow rate minimizing ESM to Mars

O Minntech, Permselect, Liqui-Cel and Oxymem (17”) had the lowest ESM

O PHB was successfully produced with three different membranes

O A maximum PHB content of 47 wt% per dry mass was obtained with the
Minntech membrane

O However, the methanotrophs seem to produce a surfactant-like molecule
that irreversibly wetted the Minntech membranes after >400h

O Further tests will be conducted with non-wettable dense Permselect and
Oxymem membranes
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The future? Breathing Reactor Networks!

O Microbial hybrid system with liquid-liquid membrane contactors
» Half the contactor surface

= No external gas input 5 aummonia Co, ®

= No vapor condensation issues

Mango Algae
o Safe Process Process Reactor
* Food waste . Biofuels

o Energy efficient ‘ @ “ & \
* Wastewater * Biopolymers

. . l * Nutrients
Confidential .

= Most gas remains dissolved

* Manure

sludge methane oxygen : * Cleaner water
\%) * Pharmaceuticals




Acknowledgements

Industry Funding AQWATEC
N SBIR/STTR Phase | and Il Tani Cath
Juliana Anderson
y, MATERIALS _ Allesandra Smith
_ - k < Kate Spangler
- X “ SMARTER ALAHUN
Aqua still 7y
Edna Bailey Sussman Foundation
CLARCOR E;F INTERNSHIP

Rudy Maltos

AQUATEC

Advanced Water Technology Center

PROGRAM

& CANTEL

26



- Thank you!




